Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Biomed Opt Express ; 15(3): 1408-1417, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38495713

RESUMO

Assessing cell viability is important in many fields of research. Current optical methods to assess cell viability typically involve fluorescent dyes, which are often less reliable and have poor permeability in primary tissues. Dynamic optical coherence microscopy (dOCM) is an emerging tool that provides label-free contrast reflecting changes in cellular metabolism. In this work, we compare the live contrast obtained from dOCM to viability dyes, and for the first time to our knowledge, demonstrate that dOCM can distinguish live cells from dead cells in murine syngeneic tumors. We further demonstrate a strong correlation between dOCM live contrast and optical redox ratio by metabolic imaging in primary mouse liver tissue. The dOCM technique opens a new avenue to apply label-free imaging to assess the effects of immuno-oncology agents, targeted therapies, chemotherapy, and cell therapies using live tumor tissues.

2.
Med Image Anal ; 90: 102961, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37802011

RESUMO

The role of fibrillar collagen in the tissue microenvironment is critical in disease contexts ranging from cancers to chronic inflammations, as evidenced by many studies. Quantifying fibrillar collagen organization has become a powerful approach for characterizing the topology of collagen fibers and studying the role of collagen fibers in disease progression. We present a deep learning-based pipeline to quantify collagen fibers' topological properties in microscopy-based collagen images from pathological tissue samples. Our method leverages deep neural networks to extract collagen fiber centerlines and deep generative models to create synthetic training data, addressing the current shortage of large-scale annotations. As a part of this effort, we have created and annotated a collagen fiber centerline dataset, with the hope of facilitating further research in this field. Quantitative measurements such as fiber orientation, alignment, density, and length can be derived based on the centerline extraction results. Our pipeline comprises three stages. Initially, a variational autoencoder is trained to generate synthetic centerlines possessing controllable topological properties. Subsequently, a conditional generative adversarial network synthesizes realistic collagen fiber images from the synthetic centerlines, yielding a synthetic training set of image-centerline pairs. Finally, we train a collagen fiber centerline extraction network using both the original and synthetic data. Evaluation using collagen fiber images from pancreas, liver, and breast cancer samples collected via second-harmonic generation microscopy demonstrates our pipeline's superiority over several popular fiber centerline extraction tools. Incorporating synthetic data into training further enhances the network's generalizability. Our code is available at https://github.com/uw-loci/collagen-fiber-metrics.


Assuntos
Colágeno , Redes Neurais de Computação , Humanos , Colágenos Fibrilares , Microscopia , Fígado
3.
J Biomed Opt ; 28(6): 066502, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37351197

RESUMO

Significance: Fluorescence lifetime imaging microscopy (FLIM) of the metabolic co-enzyme nicotinamide adenine dinucleotide (phosphate) [NAD(P)H] is a popular method to monitor single-cell metabolism within unperturbed, living 3D systems. However, FLIM of NAD(P)H has not been performed in a light-sheet geometry, which is advantageous for rapid imaging of cells within live 3D samples. Aim: We aim to design, validate, and demonstrate a proof-of-concept light-sheet system for NAD(P)H FLIM. Approach: A single-photon avalanche diode camera was integrated into a light-sheet microscope to achieve optical sectioning and limit out-of-focus contributions for NAD(P)H FLIM of single cells. Results: An NAD(P)H light-sheet FLIM system was built and validated with fluorescence lifetime standards and with time-course imaging of metabolic perturbations in pancreas cancer cells with 10 s integration times. NAD(P)H light-sheet FLIM in vivo was demonstrated with live neutrophil imaging in a larval zebrafish tail wound also with 10 s integration times. Finally, the theoretical and practical imaging speeds for NAD(P)H FLIM were compared across laser scanning and light-sheet geometries, indicating a 30× to 6× acquisition speed advantage for the light sheet compared to the laser scanning geometry. Conclusions: FLIM of NAD(P)H is feasible in a light-sheet geometry and is attractive for 3D live cell imaging applications, such as monitoring immune cell metabolism and migration within an organism.


Assuntos
NAD , Neoplasias Pancreáticas , Animais , NAD/metabolismo , Peixe-Zebra , Microscopia de Fluorescência/métodos , Fótons , Imagem Óptica/métodos
4.
bioRxiv ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778488

RESUMO

Single photon avalanche diode (SPAD) array sensors can increase the imaging speed for fluorescence lifetime imaging microscopy (FLIM) by transitioning from laser scanning to widefield geometries. While a SPAD camera in epi-fluorescence geometry enables widefield FLIM of fluorescently labeled samples, label-free imaging of single-cell autofluorescence is not feasible in an epi-fluorescence geometry because background fluorescence from out-of-focus features masks weak cell autofluorescence and biases lifetime measurements. Here, we address this problem by integrating the SPAD camera in a light sheet illumination geometry to achieve optical sectioning and limit out-of-focus contributions, enabling fast label-free FLIM of single-cell NAD(P)H autofluorescence. The feasibility of this NAD(P)H light sheet FLIM system was confirmed with time-course imaging of metabolic perturbations in pancreas cancer cells with 10 s integration times, and in vivo NAD(P)H light sheet FLIM was demonstrated with live neutrophil imaging in a zebrafish tail wound, also with 10 s integration times. Finally, the theoretical and practical imaging speeds for NAD(P)H FLIM were compared across laser scanning and light sheet geometries, indicating a 30X to 6X frame rate advantage for the light sheet compared to the laser scanning geometry. This light sheet system provides faster frame rates for 3D NAD(P)H FLIM for live cell imaging applications such as monitoring single cell metabolism and immune cell migration throughout an entire living organism.

5.
J Biomed Opt ; 28(2): 026501, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36761254

RESUMO

Significance: Advanced digital control of microscopes and programmable data acquisition workflows have become increasingly important for improving the throughput and reproducibility of optical imaging experiments. Combinations of imaging modalities have enabled a more comprehensive understanding of tissue biology and tumor microenvironments in histopathological studies. However, insufficient imaging throughput and complicated workflows still limit the scalability of multimodal histopathology imaging. Aim: We present a hardware-software co-design of a whole slide scanning system for high-throughput multimodal tissue imaging, including brightfield (BF) and laser scanning microscopy. Approach: The system can automatically detect regions of interest using deep neural networks in a low-magnification rapid BF scan of the tissue slide and then conduct high-resolution BF scanning and laser scanning imaging on targeted regions with deep learning-based run-time denoising and resolution enhancement. The acquisition workflow is built using Pycro-Manager, a Python package that bridges hardware control libraries of the Java-based open-source microscopy software Micro-Manager in a Python environment. Results: The system can achieve optimized imaging settings for both modalities with minimized human intervention and speed up the laser scanning by an order of magnitude with run-time image processing. Conclusions: The system integrates the acquisition pipeline and data analysis pipeline into a single workflow that improves the throughput and reproducibility of multimodal histopathological imaging.


Assuntos
Computadores , Software , Humanos , Reprodutibilidade dos Testes , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos , Microscopia Confocal
6.
mBio ; 14(2): e0330322, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36809075

RESUMO

Hepatitis B virus (HBV) capsid assembly is traditionally thought to occur predominantly in the cytoplasm, where the virus gains access to the virion egress pathway. To better define sites of HBV capsid assembly, we carried out single cell imaging of HBV Core protein (Cp) subcellular trafficking over time under conditions supporting genome packaging and reverse transcription in Huh7 hepatocellular carcinoma cells. Time-course analyses including live cell imaging of fluorescently tagged Cp derivatives showed Cp to accumulate in the nucleus at early time points (~24 h), followed by a marked re-distribution to the cytoplasm at 48 to 72 h. Nucleus-associated Cp was confirmed to be capsid and/or high-order assemblages using a novel dual label immunofluorescence strategy. Nuclear-to-cytoplasmic re-localization of Cp occurred predominantly during nuclear envelope breakdown in conjunction with cell division, followed by strong cytoplasmic retention of Cp. Blocking cell division resulted in strong nuclear entrapment of high-order assemblages. A Cp mutant, Cp-V124W, predicted to exhibit enhanced assembly kinetics, also first trafficked to the nucleus to accumulate at nucleoli, consistent with the hypothesis that Cp's transit to the nucleus is a strong and constitutive process. Taken together, these results provide support for the nucleus as an early-stage site of HBV capsid assembly, and provide the first dynamic evidence of cytoplasmic retention after cell division as a mechanism underpinning capsid nucleus-to-cytoplasm relocalization. IMPORTANCE Hepatitis B virus (HBV) is an enveloped, reverse-transcribing DNA virus that is a major cause of liver disease and hepatocellular carcinoma. Subcellular trafficking events underpinning HBV capsid assembly and virion egress remain poorly characterized. Here, we developed a combination of fixed and long-term (>24 h) live cell imaging technologies to study the single cell trafficking dynamics of the HBV Core Protein (Cp). We demonstrate that Cp first accumulates in the nucleus, and forms high-order structures consistent with capsids, with the predominant route of nuclear egress being relocalization to the cytoplasm during cell division in conjunction with nuclear membrane breakdown. Single cell video microscopy demonstrated unequivocally that Cp's localization to the nucleus is constitutive. This study represents a pioneering application of live cell imaging to study HBV subcellular transport, and demonstrates links between HBV Cp and the cell cycle.


Assuntos
Carcinoma Hepatocelular , Hepatite B , Neoplasias Hepáticas , Humanos , Capsídeo/metabolismo , Vírus da Hepatite B/genética , Carcinoma Hepatocelular/metabolismo , Proteínas do Capsídeo/metabolismo , Montagem de Vírus , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Divisão Celular , Replicação Viral
7.
Methods Mol Biol ; 2614: 187-235, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36587127

RESUMO

With recent advances in cancer therapeutics, there is a great need for improved imaging methods for characterizing cancer onset and progression in a quantitative and actionable way. Collagen, the most abundant extracellular matrix protein in the tumor microenvironment (and the body in general), plays a multifaceted role, both hindering and promoting cancer invasion and progression. Collagen deposition can defend the tumor with immunosuppressive effects, while aligned collagen fiber structures can enable tumor cell migration, aiding invasion and metastasis. Given the complex role of collagen fiber organization and topology, imaging has been a tool of choice to characterize these changes on multiple spatial scales, from the organ and tumor scale to cellular and subcellular level. Macroscale density already aids in the detection and diagnosis of solid cancers, but progress is being made to integrate finer microscale features into the process. Here we review imaging modalities ranging from optical methods of second harmonic generation (SHG), polarized light microscopy (PLM), and optical coherence tomography (OCT) to the medical imaging approaches of ultrasound and magnetic resonance imaging (MRI). These methods have enabled scientists and clinicians to better understand the impact collagen structure has on the tumor environment, at both the bulk scale (density) and microscale (fibrillar structure) levels. We focus on imaging methods with the potential to both examine the collagen structure in as natural a state as possible and still be clinically amenable, with an emphasis on label-free strategies, exploiting intrinsic optical properties of collagen fibers.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Colágenos Fibrilares/química , Diagnóstico por Imagem , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo
8.
J Pathol Inform ; 13: 100158, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36605110

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human cancers. However, the symptoms and radiographic appearance of chronic pancreatitis (CP) mimics that of PDAC, and sometimes the 2 entities can also be difficult to differentiate microscopically. The need for accurate differentiation of PDAC and CP has become a major topic in pancreatic pathology. These 2 diseases can present similar histomorphological features, such as excessive deposition of fibrotic stroma in the tissue microenvironment and inflammatory cell infiltration. In this paper, we present a quantitative analysis pipeline empowered by graph neural networks (GNN) capable of automatic detection and differentiation of PDAC and CP in human histological specimens. Modeling histological images as graphs and deploying graph convolutions can enable the capture of histomorphological features at different scales, ranging from nuclear size to the organization of ducts. The analysis pipeline combines image features computed from co-registered hematoxylin and eosin (H&E) images and Second-Harmonic Generation (SHG) microscopy images, with the SHG images enabling the extraction of collagen fiber morphological features. Evaluating the analysis pipeline on a human tissue micro-array dataset consisting of 786 cores and a tissue region dataset consisting of 268 images, it attained 86.4% accuracy with an average area under the curve (AUC) of 0.954 and 88.9% accuracy with an average AUC of 0.957, respectively. Moreover, incorporating topological features of collagen fibers computed from SHG images into the model further increases the classification accuracy on the tissue region dataset to 91.3% with an average AUC of 0.962, suggesting that collagen characteristics are diagnostic features in PDAC and CP detection and differentiation.

9.
Breast Cancer Res ; 23(1): 105, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34753492

RESUMO

BACKGROUND: Elevated mammographic breast density is a strong breast cancer risk factor with poorly understood etiology. Increased deposition of collagen, one of the main fibrous proteins present in breast stroma, has been associated with increased mammographic density. Collagen fiber architecture has been linked to poor outcomes in breast cancer. However, relationships of quantitative collagen fiber features assessed in diagnostic biopsies with mammographic density and lesion severity are not well-established. METHODS: Clinically indicated breast biopsies from 65 in situ or invasive breast cancer cases and 73 frequency matched-controls with a benign biopsy result were used to measure collagen fiber features (length, straightness, width, alignment, orientation and density (fibers/µm2)) using second harmonic generation microscopy in up to three regions of interest (ROIs) per biopsy: normal, benign breast disease, and cancer. Local and global mammographic density volumes were quantified in the ipsilateral breast in pre-biopsy full-field digital mammograms. Associations of fibrillar collagen features with mammographic density and severity of biopsy diagnosis were evaluated using generalized estimating equation models with an independent correlation structure to account for multiple ROIs within each biopsy section. RESULTS: Collagen fiber density was positively associated with the proportion of stroma on the biopsy slide (p < 0.001) and with local percent mammographic density volume at both the biopsy target (p = 0.035) and within a 2 mm perilesional ring (p = 0.02), but not with global mammographic density measures. As severity of the breast biopsy diagnosis increased at the ROI level, collagen fibers tended to be less dense, shorter, straighter, thinner, and more aligned with one another (p < 0.05). CONCLUSIONS: Collagen fiber density was positively associated with local, but not global, mammographic density, suggesting that collagen microarchitecture may not translate into macroscopic mammographic features. However, collagen fiber features may be markers of cancer risk and/or progression among women referred for biopsy based on abnormal breast imaging.


Assuntos
Densidade da Mama , Mama/metabolismo , Mama/patologia , Colágeno/metabolismo , Adulto , Idoso , Mama/diagnóstico por imagem , Doenças Mamárias/diagnóstico por imagem , Doenças Mamárias/metabolismo , Doenças Mamárias/patologia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Humanos , Biópsia Guiada por Imagem , Mamografia , Microscopia , Pessoa de Meia-Idade , Células Estromais/metabolismo , Células Estromais/patologia
10.
Sci Rep ; 11(1): 19063, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34561546

RESUMO

Over the past two decades, fibrillar collagen reorganization parameters such as the amount of collagen deposition, fiber angle and alignment have been widely explored in numerous studies. These parameters are now widely accepted as stromal biomarkers and linked to disease progression and survival time in several cancer types. Despite all these advances, there has not been a significant effort to make it possible for clinicians to explore these biomarkers without adding steps to the clinical workflow or by requiring high-cost imaging systems. In this paper, we evaluate previously described polychromatic polarization microscope (PPM) to visualize collagen fibers with an optically generated color representation of fiber orientation and alignment when inspecting the sample by a regular microscope with minor modifications. This system does not require stained slides, but is compatible with histological stains such as H&E. Consequently, it can be easily accommodated as part of regular pathology review of tissue slides, while providing clinically useful insight into stromal composition.


Assuntos
Colágenos Fibrilares/metabolismo , Microscopia de Polarização/métodos , Adenocarcinoma/metabolismo , Biomarcadores/metabolismo , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Humanos , Masculino , Pâncreas/metabolismo , Pâncreas/patologia , Neoplasias da Próstata/metabolismo
11.
Metabolites ; 11(5)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925445

RESUMO

This study uses dynamic hyperpolarized [1-13C]pyruvate magnetic resonance spectroscopic imaging (MRSI) to estimate differences in glycolytic metabolism between highly metastatic (4T1, n = 7) and metastatically dormant (4T07, n = 7) murine breast cancer models. The apparent conversion rate of pyruvate-to-lactate (kPL) and lactate-to-pyruvate area-under-the-curve ratio (AUCL/P) were estimated from the metabolite images and compared with biochemical metabolic measures and immunohistochemistry (IHC). A non-significant trend of increasing kPL (p = 0.17) and AUCL/P (p = 0.11) from 4T07 to 4T1 tumors was observed. No significant differences in tumor IHC lactate dehydrogenase-A (LDHA), monocarboxylate transporter-1 (MCT1), cluster of differentiation 31 (CD31), and hypoxia inducible factor-α (HIF-1α), tumor lactate-dehydrogenase (LDH) activity, or blood lactate or glucose levels were found between the two tumor lines. However, AUCL/P was significantly correlated with tumor LDH activity (ρspearman = 0.621, p = 0.027) and blood glucose levels (ρspearman = -0.474, p = 0.042). kPL displayed a similar, non-significant trend for LDH activity (ρspearman = 0.480, p = 0.114) and blood glucose levels (ρspearman = -0.414, p = 0.088). Neither kPL nor AUCL/P were significantly correlated with blood lactate levels or tumor LDHA or MCT1. The significant positive correlation between AUCL/P and tumor LDH activity indicates the potential of AUCL/P as a biomarker of glycolytic metabolism in breast cancer models. However, the lack of a significant difference between in vivo tumor metabolism for the two models suggest similar pyruvate-to-lactate conversion despite differing metastatic potential.

12.
Nat Biomed Eng ; 5(3): 203-218, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33589781

RESUMO

High-throughput methods for slide-free three-dimensional (3D) pathological analyses of whole biopsies and surgical specimens offer the promise of modernizing traditional histology workflows and delivering improvements in diagnostic performance. Advanced optical methods now enable the interrogation of orders of magnitude more tissue than previously possible, where volumetric imaging allows for enhanced quantitative analyses of cell distributions and tissue structures that are prognostic and predictive. Non-destructive imaging processes can simplify laboratory workflows, potentially reducing costs, and can ensure that samples are available for subsequent molecular assays. However, the large size of the feature-rich datasets that they generate poses challenges for data management and computer-aided analysis. In this Perspective, we provide an overview of the imaging technologies that enable 3D pathology, and the computational tools-machine learning, in particular-for image processing and interpretation. We also discuss the integration of various other diagnostic modalities with 3D pathology, along with the challenges and opportunities for clinical adoption and regulatory approval.


Assuntos
Biópsia/métodos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Animais , Humanos , Aprendizado de Máquina , Prognóstico
13.
Bioengineering (Basel) ; 8(2)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494220

RESUMO

Recent research has highlighted the importance of key tumor microenvironment features, notably the collagen-rich extracellular matrix (ECM) in characterizing tumor invasion and progression. This led to great interest from both basic researchers and clinicians, including pathologists, to include collagen fiber evaluation as part of the investigation of cancer development and progression. Fibrillar collagen is the most abundant in the normal extracellular matrix, and was revealed to be upregulated in many cancers. Recent studies suggested an emerging theme across multiple cancer types in which specific collagen fiber organization patterns differ between benign and malignant tissue and also appear to be associated with disease stage, prognosis, treatment response, and other clinical features. There is great potential for developing image-based collagen fiber biomarkers for clinical applications, but its adoption in standard clinical practice is dependent on further translational and clinical evaluations. Here, we offer a comprehensive review of the current literature of fibrillar collagen structure and organization as a candidate cancer biomarker, and new perspectives on the challenges and next steps for researchers and clinicians seeking to exploit this information in biomedical research and clinical workflows.

14.
Conf Comput Vis Pattern Recognit Workshops ; 2021: 14318-14328, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35047230

RESUMO

We address the challenging problem of whole slide image (WSI) classification. WSIs have very high resolutions and usually lack localized annotations. WSI classification can be cast as a multiple instance learning (MIL) problem when only slide-level labels are available. We propose a MIL-based method for WSI classification and tumor detection that does not require localized annotations. Our method has three major components. First, we introduce a novel MIL aggregator that models the relations of the instances in a dual-stream architecture with trainable distance measurement. Second, since WSIs can produce large or unbalanced bags that hinder the training of MIL models, we propose to use self-supervised contrastive learning to extract good representations for MIL and alleviate the issue of prohibitive memory cost for large bags. Third, we adopt a pyramidal fusion mechanism for multiscale WSI features, and further improve the accuracy of classification and localization. Our model is evaluated on two representative WSI datasets. The classification accuracy of our model compares favorably to fully-supervised methods, with less than 2% accuracy gap across datasets. Our results also outperform all previous MIL-based methods. Additional benchmark results on standard MIL datasets further demonstrate the superior performance of our MIL aggregator on general MIL problems.

15.
Exp Eye Res ; 202: 108315, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33091431

RESUMO

The lamina cribrosa (LC) region of the optic nerve head (ONH) is considered a primary site for glaucomatous damage. In humans, biology of this region reflects complex interactions between retinal ganglion cell (RGC) axons and other resident ONH cell-types including astrocytes, lamina cribrosa cells, microglia and oligodendrocytes, as well as ONH microvasculature and collagenous LC beams. However, species differences in the microanatomy of this region could profoundly impact efforts to model glaucoma pathobiology in a research setting. In this study, we characterized resident cell-types, ECM composition and ultrastructure in relation to microanatomy of the ONH in adult domestic cats (Felis catus). Longitudinal and transverse cryosections of ONH tissues were immunolabeled with astrocyte, microglia/macrophage, oligodendrocyte, LC cell and vascular endothelial cell markers. Collagen fiber structure of the LC was visualized by second harmonic generation (SHG) with multiphoton microscopy. Fibrous astrocytes form glial fibrillary acidic protein (GFAP)-positive glial columns in the pre-laminar region, and cover the collagenous plates of the LC region in lamellae oriented perpendicular to the axons. GFAP-negative and alpha-smooth muscle actin-positive LC cells were identified in the feline ONH. IBA-1 positive immune cells and von Willebrand factor-positive blood vessel endothelial cells are also identifiable throughout the feline ONH. As in humans, myelination commences with a population of oligodendrocytes in the retro-laminar region of the feline ONH. Transmission electron microscopy confirmed the presence of capillaries and LC cells that extend thin processes in the core of the collagenous LC beams. In conclusion, the feline ONH closely recapitulates the complexity of the ONH of humans and non-human primates, with diverse ONH cell-types and a robust collagenous LC, within the beams of which, LC cells and capillaries reside. Thus, studies in a feline inherited glaucoma model have the potential to play a key role in enhancing our understanding of ONH cellular and molecular processes in glaucomatous optic neuropathy.


Assuntos
Astrócitos/citologia , Macrófagos/citologia , Microglia/citologia , Oligodendroglia/citologia , Disco Óptico/citologia , Animais , Astrócitos/metabolismo , Biomarcadores/metabolismo , Gatos , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Humanos , Macrófagos/metabolismo , Microglia/metabolismo , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Oligodendroglia/metabolismo
16.
Cancer Epidemiol Biomarkers Prev ; 30(1): 80-88, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33082201

RESUMO

BACKGROUND: There is widespread interest in discriminating indolent from aggressive ductal carcinoma in situ (DCIS). We sought to evaluate collagen organization in the DCIS tumor microenvironment in relation to pathologic characteristics and patient outcomes. METHODS: We retrieved fixed tissue specimens for 90 DCIS cases within the population-based Vermont DCIS Cohort. We imaged collagen fibers within 75 µm of the tumor/stromal boundary on hematoxylin and eosin-stained slides using multiphoton microscopy with second-harmonic generation. Automated software quantified collagen fiber length, width, straightness, density, alignment, and angle to the tumor/stroma boundary. Factor analysis identified linear combinations of collagen fiber features representing composite attributes of collagen organization. RESULTS: Multiple collagen features were associated with DCIS grade, necrosis pattern, or periductal fibrosis (P < 0.05). After adjusting for treatments and nuclear grade, risk of recurrence (defined as any second breast cancer diagnosis) was lower among cases with greater collagen fiber width [hazard ratio (HR), 0.57 per one standard deviation increase; 95% confidence interval (CI), 0.39-0.84] and fiber density (HR, 0.60; 95% CI, 0.42-0.85), whereas risk was elevated among DCIS cases with higher fiber straightness (HR, 1.47; 95% CI, 1.05-2.06) and distance to the nearest two fibers (HR, 1.47; 95% CI, 1.06-2.02). Fiber length, alignment, and fiber angle were not associated with recurrence (P > 0.05). Five composite factors were identified, accounting for 72.4% of the total variability among fibers; three were inversely associated with recurrence (HRs ranging from 0.60 to 0.67; P ≤ 0.01). CONCLUSIONS: Multiple aspects of collagen organization around DCIS lesions are associated with recurrence risk. IMPACT: Collagen organization should be considered in the development of prognostic DCIS biomarker signatures.


Assuntos
Neoplasias da Mama/patologia , Carcinoma Intraductal não Infiltrante/patologia , Colágeno/metabolismo , Recidiva Local de Neoplasia , Adulto , Idoso , Estudos de Coortes , Colágeno/ultraestrutura , Feminino , Humanos , Pessoa de Meia-Idade , Sistema de Registros
17.
Phys Med Biol ; 66(3): 035008, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33171448

RESUMO

High-frequency quantitative ultrasound is a potential non-invasive source of imaging cell-tissue scale biomarkers for major diseases such as heart disease, cancer, and preterm birth. However, one of the barriers to developing such biomarkers is that it is labor-intensive to compare quantitative ultrasound images to optical images of the tissue structure. We have previously developed a multiscale imaging system that can obtain registered qualitative ultrasound and optical images, but there are further technical challenges to obtaining quantitative data: System-specific details of obtaining and processing data with Verasonics high-frequency transducers; the need for high-frequency reference phantoms; and off-axis clutter from imaging above a glass coverslip. This paper provides a characterization of the Verasonics ultrasound system with the 18.5 MHz L22-14v and 28.5 MHz L38-22v transducers, describes the construction of high-frequency reference phantoms, and details methods for reducing off-axis clutter. The paper features a demonstration multiscale image of a wild type mouse mammary gland that incorporates quantitative ultrasound with both transducers and second harmonic generation microscopy. These advances demonstrate a way to obtain, on a single system with a cohesive and integrated pipeline, quantitative ultrasound data that is correlated with optical imaging without the need for extensive sample preparation.


Assuntos
Imagem Óptica/métodos , Ultrassonografia/métodos , Animais , Desenho de Equipamento , Feminino , Camundongos , Imagem Multimodal , Imagem Óptica/instrumentação , Imagens de Fantasmas , Gravidez , Nascimento Prematuro/diagnóstico por imagem , Transdutores , Ultrassonografia/instrumentação
18.
J Vis Exp ; (165)2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33252107

RESUMO

Fibrillar collagens are prominent extracellular matrix (ECM) components, and their topology changes have been shown to be associated with the progression of a wide range of diseases including breast, ovarian, kidney, and pancreatic cancers. Freely available fiber quantification software tools are mainly focused on the calculation of fiber alignment or orientation, and they are subject to limitations such as the requirement of manual steps, inaccuracy in detection of the fiber edge in noisy background, or lack of localized feature characterization. The collagen fiber quantitation tool described in this protocol is characterized by using an optimal multiscale image representation enabled by curvelet transform (CT). This algorithmic approach allows for the removal of noise from fibrillar collagen images and the enhancement of fiber edges to provide location and orientation information directly from a fiber, rather than using the indirect pixel-wise or window-wise information obtained from other tools. This CT-based framework contains two separate, but linked, packages named "CT-FIRE" and "CurveAlign" that can quantify fiber organization on a global, region of interest (ROI), or individual fiber basis. This quantification framework has been developed for more than ten years and has now evolved into a comprehensive and user-driven collagen quantification platform. Using this platform, one can measure up to about thirty fiber features including individual fiber properties such as length, angle, width, and straightness, as well as bulk measurements such as density and alignment. Additionally, the user can measure fiber angle relative to manually or automatically segmented boundaries. This platform also provides several additional modules including ones for ROI analysis, automatic boundary creation, and post-processing. Using this platform does not require prior experience of programming or image processing, and it can handle large datasets including hundreds or thousands of images, enabling efficient quantification of collagen fiber organization for biological or biomedical applications.


Assuntos
Colágenos Fibrilares/química , Software , Neoplasias da Mama/patologia , Matriz Extracelular/química , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Fatores de Tempo , Análise Serial de Tecidos
19.
Commun Biol ; 3(1): 414, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737412

RESUMO

The importance of fibrillar collagen topology and organization in disease progression and prognostication in different types of cancer has been characterized extensively in many research studies. These explorations have either used specialized imaging approaches, such as specific stains (e.g., picrosirius red), or advanced and costly imaging modalities (e.g., second harmonic generation imaging (SHG)) that are not currently in the clinical workflow. To facilitate the analysis of stromal biomarkers in clinical workflows, it would be ideal to have technical approaches that can characterize fibrillar collagen on standard H&E stained slides produced during routine diagnostic work. Here, we present a machine learning-based stromal collagen image synthesis algorithm that can be incorporated into existing H&E-based histopathology workflow. Specifically, this solution applies a convolutional neural network (CNN) directly onto clinically standard H&E bright field images to extract information about collagen fiber arrangement and alignment, without requiring additional specialized imaging stains, systems or equipment.


Assuntos
Biomarcadores Tumorais/isolamento & purificação , Colágenos Fibrilares/ultraestrutura , Imagem Molecular/métodos , Neoplasias/diagnóstico por imagem , Compostos Azo/química , Biomarcadores Tumorais/química , Progressão da Doença , Colágenos Fibrilares/isolamento & purificação , Humanos , Neoplasias/diagnóstico , Neoplasias/patologia , Redes Neurais de Computação , Prognóstico , Microscopia de Geração do Segundo Harmônico/métodos , Células Estromais/ultraestrutura
20.
Wound Repair Regen ; 28(6): 848-855, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32715561

RESUMO

Surgery is the definitive treatment for burn patients who sustain full-thickness burn injuries. Visual assessment of burn depth is made by the clinician early after injury but is accurate only up to 70% of the time among experienced surgeons. Collagen undergoes denaturation as a result of thermal injury; however, the association of collagen denaturation and cellular death in response to thermal injury is unknown. While gene expression assays and histologic staining allow for ex vivo identification of collagen changes, these methods do not provide spatial or integrity information in vivo. Thermal effects on collagen and the role of collagen in wound repair have been understudied in human burn models due to a lack of methods to visualize both intact and denatured collagen. Hence, there is a critical need for a clinically applicable method to discriminate between damaged and intact collagen fibers in tissues. We present two complementary candidate methods for visualization of collagen structure in three dimensions. Second harmonic generation imaging offers a label-free, high-resolution method to identify intact collagen. Simultaneously, a fluorophore-tagged collagen-mimetic peptide can detect damaged collagen. Together, these methods enable the characterization of collagen damage in human skin biopsies from burn patients, as well as ex vivo thermally injured human skin samples. These combined methods could enhance the understanding of the role of collagen in human wound healing after thermal injury and potentially assist in clinical decision-making.


Assuntos
Queimaduras/diagnóstico , Colágeno , Matriz Extracelular/patologia , Imagem Óptica/métodos , Pele/patologia , Cicatrização/fisiologia , Temperatura Alta/efeitos adversos , Humanos , Pele/lesões , Coloração e Rotulagem , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA